Secure Information Sharing for Cyber Response Teams

Cyber Incident Response

Models and Platforms for Information and Resource Sharing

UTSA Team

Ram Krishnan, Assistant Professor (ECE) Ravi Sandhu, Professor (CS) and Executive Director (ICS) Amy Zhang, PhD Candidate, UTSA

October 06, 2014

THANKS!

Cyber Incidents

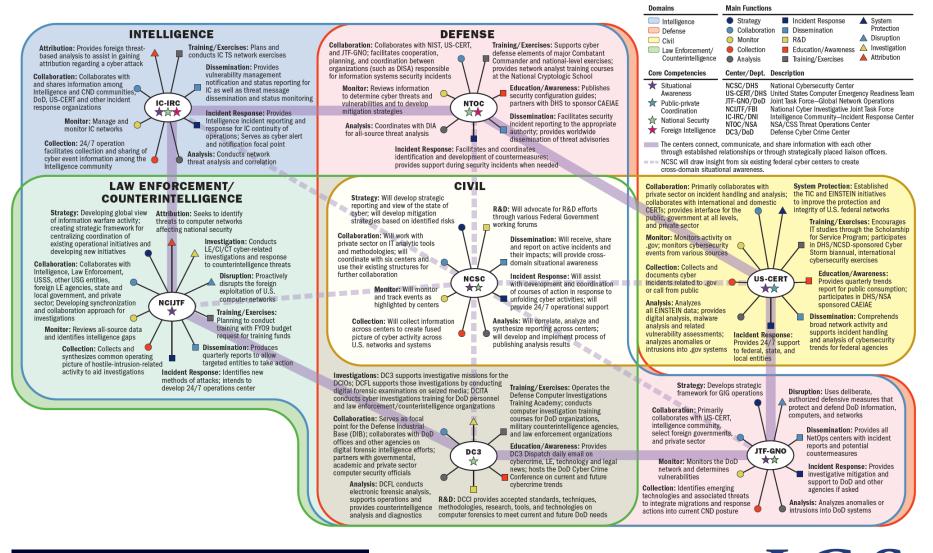
- Recent incidents
 - JPMorgan Chase and 9 other financial institutions
 - >76M households compromised
 - Target, Home Depot, Michaels, Nieman Marcus

Cyber Incident Response

- Information sharing
- Two major challenges
 - Policy
 - Technology

National Information Sharing and Coordination Initiatives

- Inter-agency collaboration and coordination to enhance situational awareness
 - Share malicious activities on federal systems
 - <u>Technologies, tools,</u>
 <u>procedures,</u>
 <u>analytics</u>


UTSA Engineering

National Cybersecurity Center

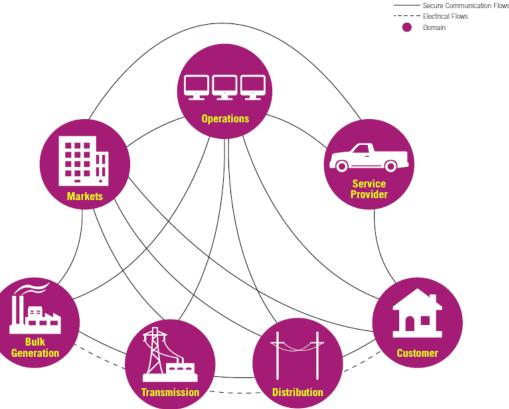
Ref: http://www.whitehouse.gov/files/documents/cyber/CybersecurityCentersGraphic.pdf

I.C.S

The Institute for Cyber Security

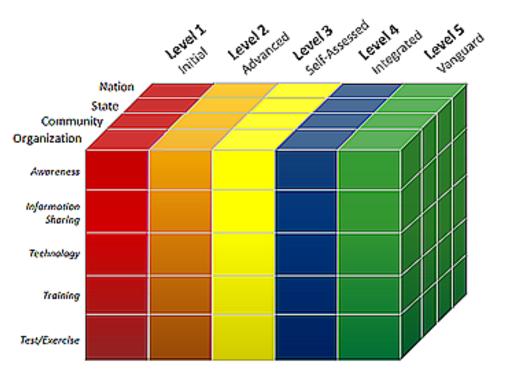
Project Scope

- Focus on technical challenges
- Sharing amongst <u>a set</u> of organizations
 - Information, infrastructure, tools, analytics, etc.
 - May want to share malicious or infected code/systems (e.g. virus, worms, etc.)
 - Sensitive
 - Often ad hoc
- What are the effective ways to facilitate sharing in such circumstances?
 - Information sharing models
 - Infrastructure, technologies, platforms



Electric Grid Scenario

- Cyber incidents in electricity providers
 - Local utilities, regional, state, national operators
- Need a standing platform that facilitates sharing
 - Controlled access



Community Scenario

- Cyber incidents across critical infrastructure providers in a community
 - Emergency response, healthcare, banks, utility
- Need a community information sharing platform
 - Controlled access

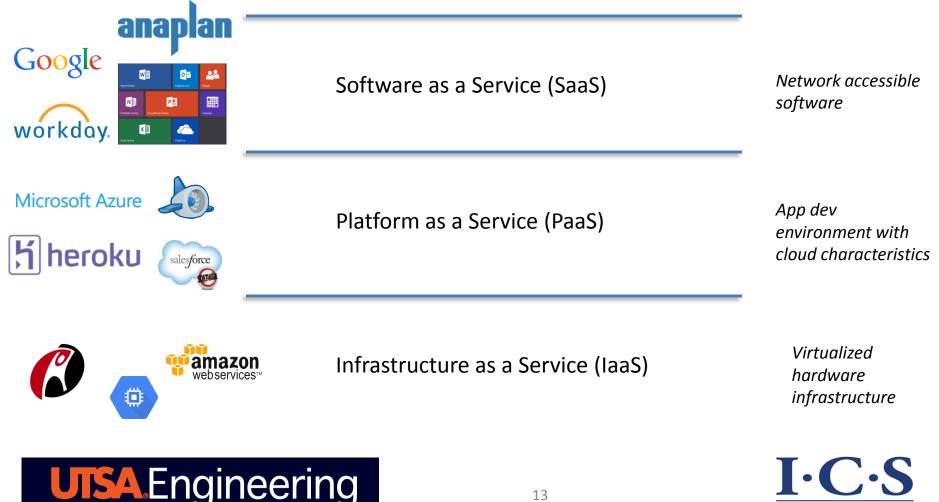
Community Cyber Security Maturity Model *"Yardstick" to determine current cyber security posture*

Data Exfiltration Scenario

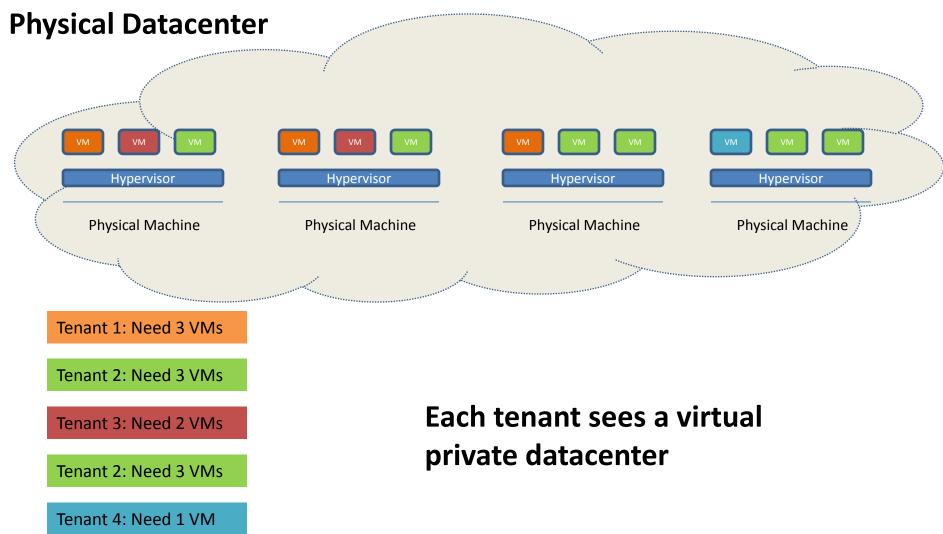
- Unusual file transfers from IP addresses within an org to an external IP address
- Similar activities observed in partner orgs
- Need to find if these events are connected
 Any correlation between those files?
- Share resources for analysis+collaboration

Key Requirements for Information Sharing

- Cyber infrastructure
- Light-weight and agile
- Rapid deployment and configuration
- Secure isolated environment


Cyber Infrastructure for Sharing

- Traditional platforms
 - Shared storage
 - SharePoint, Dropbox, Google Drive, etc.
 - Shared infrastructure
 - Grid computing
- Modern platform
 - Cloud



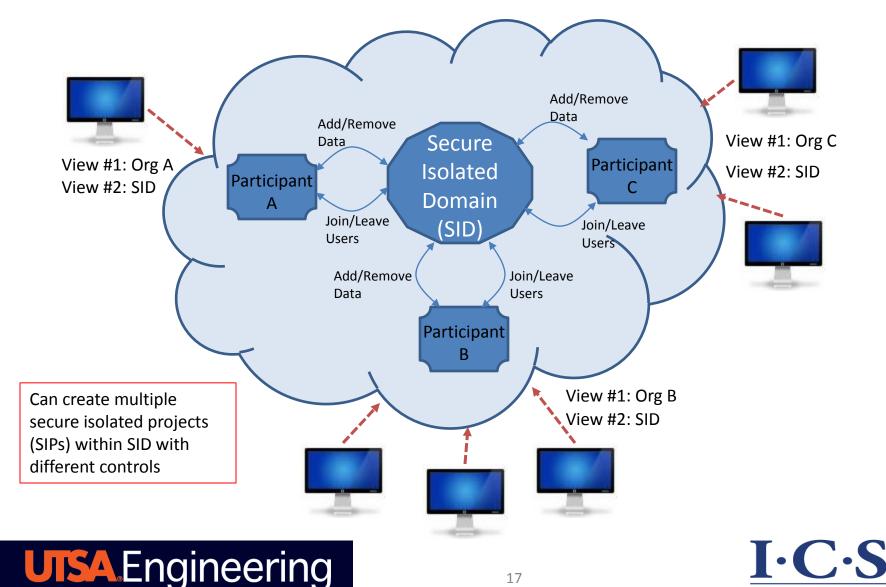
Cloud Service Models

The Institute for Cyber Security

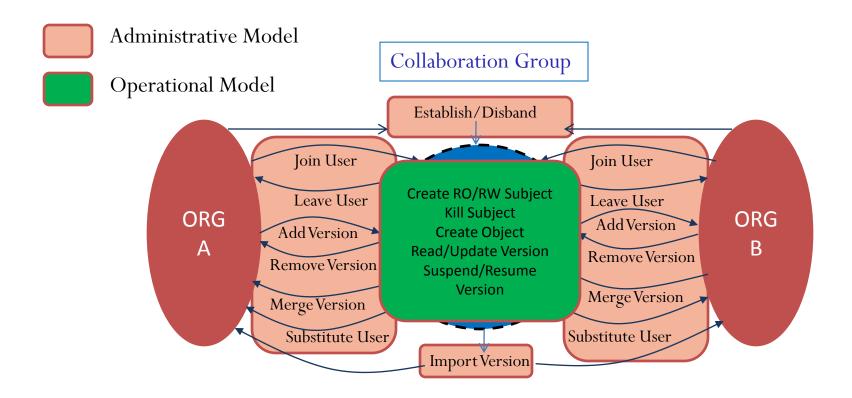
laaS Cloud

Cloud IaaS Advantages for Cyber Incident Sharing

- Virtualized resources
 - Theoretically, one can take a snapshot and mobilize
- Operational efficiency
 - Light-weight and agile
 - Rapid deployment and configuration
 - Dynamic scaling
 - Self-service

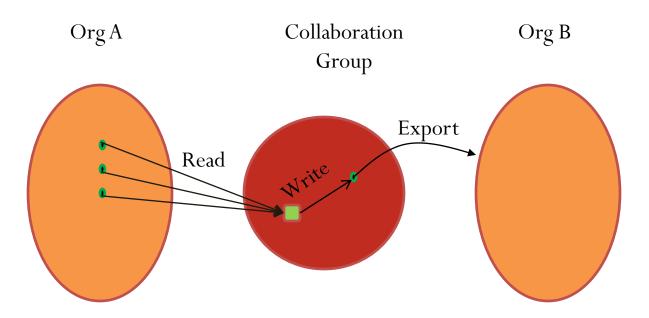

Cloud IaaS Challenges for Cyber Incident Sharing

- Tenants are strongly isolated
- IaaS clouds lack secure sharing models
 - Storage
 - Compute
 - Networks
- Need ability to snapshot tenant infrastructure, share, and control who can access
 - Share by copy


Sharing Model in Cloud IaaS

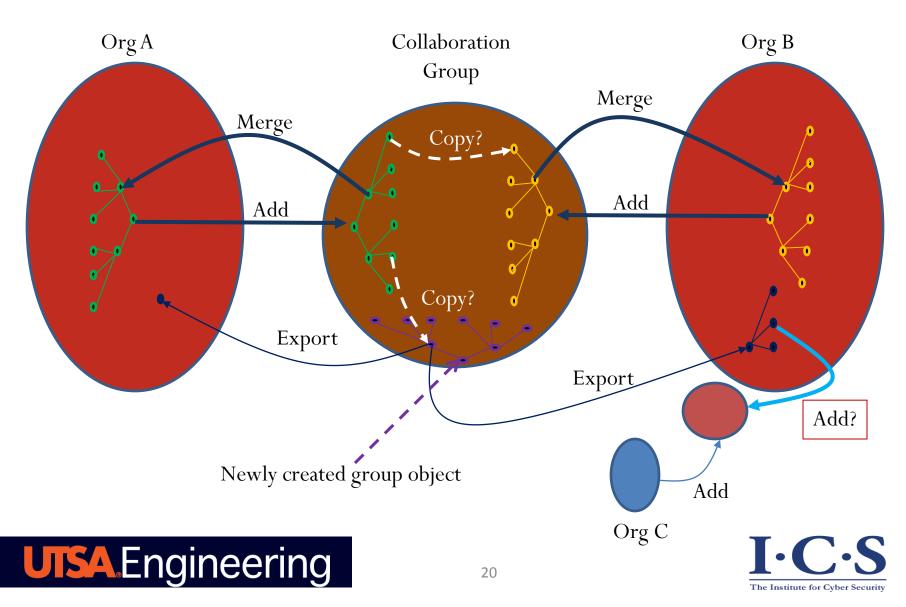
The Institute for Cyber Security

17


Conceptual Model

UTSA Engineering

Read-only Vs Read-Write Subjects



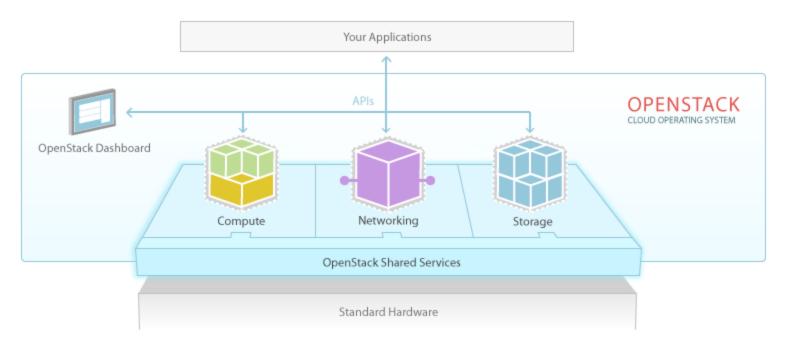
- Read Only subjects can read from multiple groups/entities
- Read-Write subjects restricted to one group
- **UTSA** Engineering

- Malicious Group Subject
- Object

Merge Vs Export of Objects

OpenStack

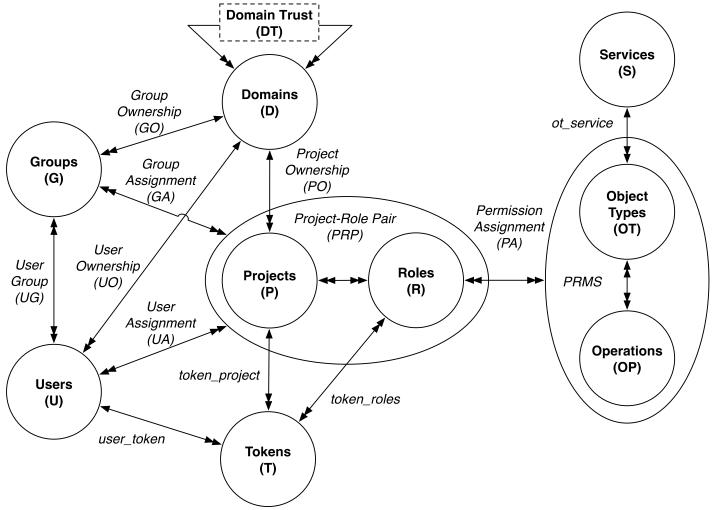
• OpenStack

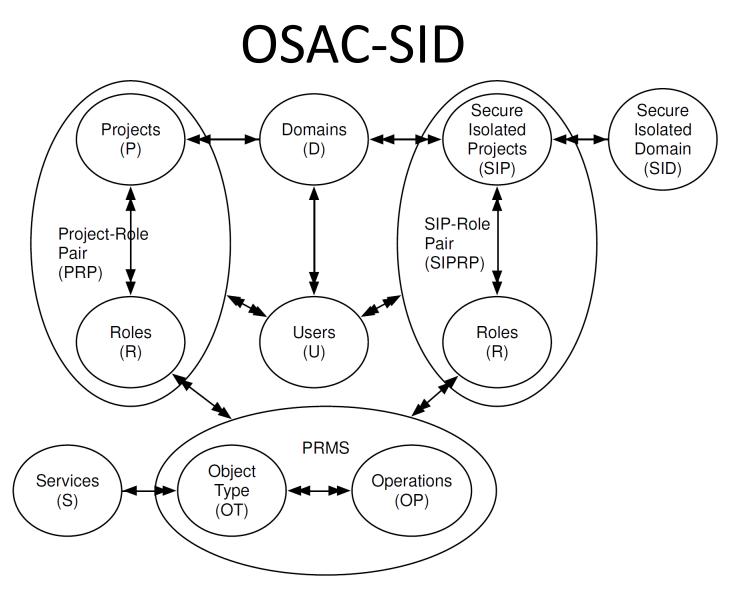

- > 200 companies
- ~14000 developers

•

The Institute for Cyber Security

>130 countries


- Dominant open-source cloud IaaS software

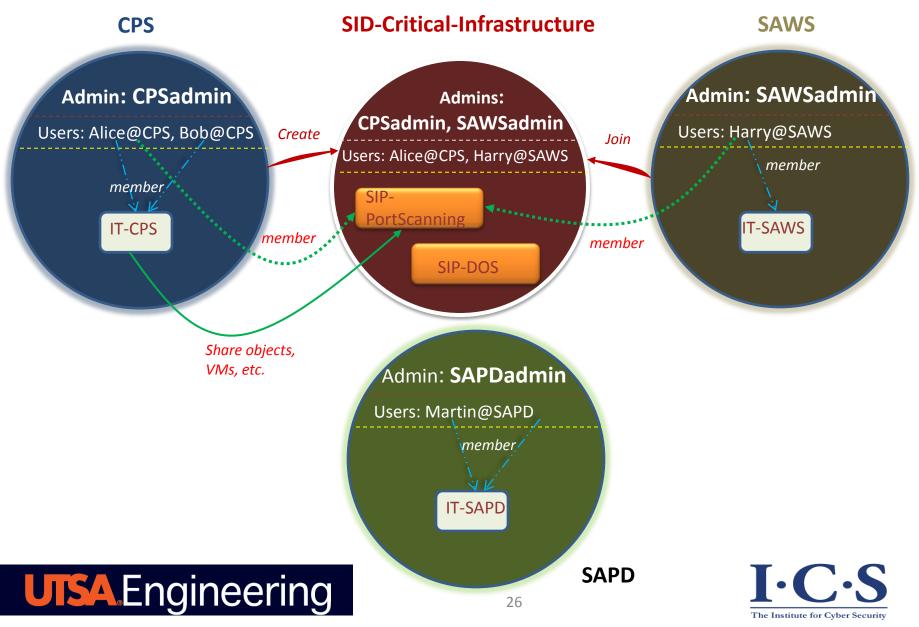


OpenStack Access Control (OSAC)

OSAC-SID Administrative Model

Operation	Authorization Requirement	Update
SipCreate (uSet, sip) /* a set of domain admin users together create a sip */	$\forall u1, u2 \in uSet.((DA(u1)=True \land DA(u2)=True \land u1 \neq u2 \land UO(u1) \neq UO(u2)))$ sip \in (UNIV_SIP - SIP)	$SIPO(sip) = \bigcup_{\forall u \in uSet} UO(u)$ SIPU(sip) = uSet $\forall u \in uSet.SIPA(u) = SIPA(u)$
,		$ \bigcup { sip } \\ SIP' = SIP \cup { sip } $
SipDelete (uSet, sip) /* delete the sip*/	$ \forall u \in uSet.((DA(u)=True \land sip \in SIPA(u))) \land $ SIPO(sip) = $\bigcup_{\forall u \in uSet} UO(u)$ sip \in SIP	SIPO(sip) = NULL SIPU(sip) = NULL $\forall u \in uSet.SIPA(u) = SIPA(u)$ $- {sip}$ $SIP' = SIP - {sip}$
SidCreate (uSet, sid) /* a set of domain admin users together create a sid */	$\forall u1, u2 \in uSet.((DA(u1)=True \land DA(u2)=True \land u1 \neq u2 \land UO(u1) \neq UO(u2)))$ sid \in (UNIV_SID - SID)	$\begin{aligned} \text{SIDO}(\text{sid}) &= \bigcup_{\forall u \in uSet} \text{UO}(u) \\ \text{SID'} &= \text{SID} \cup \{\text{sid}\} \end{aligned}$
SidDelete (uSet, sid) /* delete the sid*/	$ \forall u \in uSet.((DA(u)=True \land sid \in SIDA(u))) \land $ SIDO(sid) = $\bigcup_{\forall u \in uSet} UO(u) $ sid \in SID	SIDO(sid) = NULL SID' = SID - {sid}
UserAdd(admin, r, u, sip) /* sip admin add a normal user to a sip*/	$\begin{array}{l} \operatorname{sip} \in \operatorname{SIPA}(\operatorname{admin}) \wedge \operatorname{DA}(\operatorname{admin}) = \operatorname{True} \wedge \\ \operatorname{UO}(\operatorname{admin}) \in \operatorname{SIDO}(\operatorname{sid}) \wedge \operatorname{sip} \in \operatorname{sid} \wedge \operatorname{UO}(\operatorname{u}) = \\ \operatorname{UO}(\operatorname{admin}) \wedge \operatorname{r} \in \operatorname{R} \wedge \operatorname{sip} \in \operatorname{SIP} \wedge \operatorname{u} \in \operatorname{U} \end{array}$	$\begin{array}{l} (u,(\mathrm{sip},r))\in\mathrm{SIPUA}\wedge\\ \mathrm{SIPU'}(\mathrm{sip})=\mathrm{SIPU}(u)\cup\{u\} \end{array}$
UserRemove(admin, r, u, sip) /* sip admin remove a normal user from a sip*/	$\begin{array}{l} \operatorname{sip} \in \operatorname{SIPA}(\operatorname{admin}) \wedge \operatorname{DA}(\operatorname{admin}) = \operatorname{True} \wedge \\ \operatorname{UO}(\operatorname{admin}) \in \operatorname{SIDO}(\operatorname{sid}) \wedge \operatorname{sip} \in \operatorname{sid} \wedge \operatorname{UO}(\operatorname{u}) = \\ \operatorname{UO}(\operatorname{admin}) \wedge \operatorname{r} \in \operatorname{R} \wedge \operatorname{sip} \in \operatorname{SIP} \wedge \operatorname{u} \in \operatorname{U} \wedge (\operatorname{u}, \\ (\operatorname{sip}, \operatorname{r})) \in \operatorname{SIPUA} \end{array}$	$(u, (sip, r)) = NULL \land$ SIPU'(sip) = SIPU(u) - {u}
CopyObject (u, so1, c1, p, d, so2, c2, sip, sid)	$\begin{array}{l} \mathrm{so1} \in \mathrm{SO} \land \mathrm{c1} \in \mathrm{C} \land \mathrm{p} \in \mathrm{P} \cup \mathrm{SIP} \land \mathrm{d} \in \mathrm{D} \cup \mathrm{SID} \\ \land \mathrm{so2} \in (\mathrm{UNIV_SO} - \mathrm{SO}) \land \mathrm{c2} \in \mathrm{C} \land \mathrm{sip} \in \mathrm{P} \cup \\ \mathrm{SIP} \land \mathrm{sid} \in \mathrm{D} \cup \mathrm{SID} \land (\mathrm{so1}, \mathrm{c1}) \in \mathrm{SOO} \land (\mathrm{c1}, \mathrm{p}) \\ \in \mathrm{CO} \land (\mathrm{p}, \mathrm{d}) \in \mathrm{PO} \cup \mathrm{SIPO} \land (\mathrm{c2}, \mathrm{sip}) \in \mathrm{CO} \land \\ (\mathrm{sip}, \mathrm{sid}) \in \mathrm{PO} \cup \mathrm{SIPO} \land \mathrm{u} \in \mathrm{U} \land (\mathrm{u}, (\mathrm{p}, \mathrm{r})) \in \\ \mathrm{UA} \land (\mathrm{u}, (\mathrm{sip}, \mathrm{r})) \in \mathrm{SIPUA} \end{array} \right)$	$SO' = SO \cup \{so2\}$ SOO' = SOO \u2265 \u2264 \u2265

[†] uSet: a set of domain admin users.



OSAC-SID Operational Model

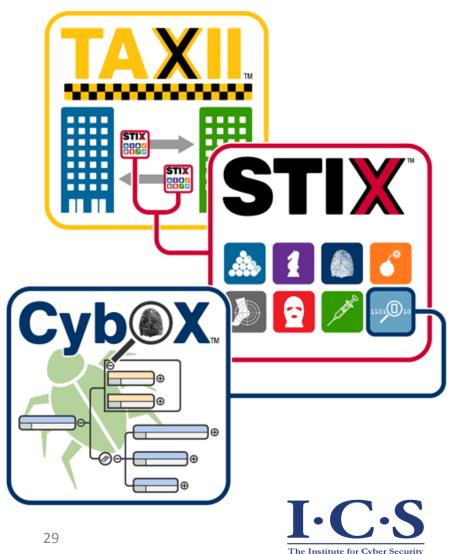
Operation	Authorization Requirement	Update
Nova:		
CreateVM(vm, sip, u)	$vm \in (UNIV_VM - VM) \land sip \in SIP \land$	$VM' = VM \cup \{vm\}$
	$u \in U \land \exists (perms, r) \in PA.(perms = (vm, create) \land$	$VMO' = VMO \cup \{(vm, p)\}$
	$(u, (sip, r)) \in SIPUA$)	
$\mathbf{DeleteVM}(vm, sip, u)$	$vm \in VM \land sip \in SIP \land$	$VM' = VM - \{vm\}$
	$u \in U \land \exists (perms, r) \in PA.(perms = (vm, delete) \land$	$ VMO' = VMO - \{(vm, p)\}$
	$(u, (sip, r)) \in SIPUA$)	vm = NULL
Swift:		
CreateContainer (c, sip, u)	$c \in (UNIV_C - C) \land sip \in SIP \land$	$C' = C \cup \{c\}$
	$u \in U \land (u, (sip, r)) \in SIPUA)$	$CO' = CO \cup \{(c, p)\}$
DeleteContainer (c, sip, u)	$c \in C \land sip \in SIP \land$	$C' = C - \{c\}$
	$u \in U \land (u, (sip, r)) \in SIPUA)$	$CO' = CO - \{(c, p)\}$
		c = NULL
UploadObject(so, c, sip, u)	$so \in UNIV_SO \land c \in C \land sip \in SIP \land$	$SO' = SO \cup \{so\}$
	$u \in U \land (u, (sip, r)) \in SIPUA)$	SOO' = SOO \cup {(so, c)}
	if \exists so' \in SO. (so = so'), then so' = so	
$\mathbf{DownloadObject}(so, c, u, p)$	$so \in SO \land c \in C \land sip \in SIP \land$	
	$u \in U \land (u, (sip, r)) \in SIPUA)$	
DeleteObject (so, c, sip, u)	$so \in SO \land c \in C \land sip \in SIP \land$	$SO' = SO - {so}$
	$u \in U \land (u, (sip, r)) \in SIPUA)$	$SOO' = SOO - \{(so, c)\}$
		so = NULL

SID and SIP in OpenStack

Key Accomplishments (1)

- Developed sharing models
 - Formal specification
 - Cloud-based instantiation
- Enhanced OpenStack with SID/SIP capabilities
 - Cyber incident response capabilities out of the box
 - Self-service
 - SID/SIP specific security
 - Share data, tools, etc. in an isolated environment
 - Ability to execute and analyze malicious code in an isolated environment
 - Practitioners can deploy a "cyber incident response" cloud
 - Potential blueprint for official OpenStack adoption

Key Accomplishments (2)


- Initial work published in Association for Computing Machinery (ACM) Workshop on Information Sharing and Collaborative Security (WISCS '14)
 - To be presented on November 3, 2014 in Scottsdale, AZ
 - Potential dissertation topic for Amy Zhang, PhD Candidate

Next Steps (1)

- Integrate STIX-TAXII in SID
 - Information Sharing
 Specifications for Cybersecurity
- Trusted Automated eXchange of Indicator Information (TAXII)
- Structured Threat Information eXpression (STIX)
- Cyber Observable eXpression (CybOX)

Next Steps (2)

- Fine-grained and expressive access control
- Hardened SID/SIP
- User-friendly interface for management
- Develop cyber incident response lifecycle management in cloud
 - Prepare, share, detect & analyze, contain/eradicate, post-incident activity, etc.

Thanks

• Comments, Q&A

